On the Well-posedness and Regularity of the Wave Equation with Variable Coefficients
نویسندگان
چکیده
An open-loop system of a multidimensional wave equation with variable coefficients, partial boundary Dirichlet control and collocated observation is considered. It is shown that the system is well-posed in the sense of D. Salamon and regular in the sense of G. Weiss. The Riemannian geometry method is used in the proof of regularity and the feedthrough operator is explicitly computed. Mathematics Subject Classification. 35J50, 93C20, 93C25. Received January 12, 2006. Revised May 25, 2006. Published online September 5, 2007.
منابع مشابه
Global Well-posedness for Solutions of Low Regularity to the Defocusing Cubic Wave Equation on R
We prove global well-posedness for the defocusing cubic wave equation
متن کاملGlobal Well-posedness of Quasilinear Wave Equations on Asymptotically De Sitter Spaces
We establish the small data solvability of suitable quasilinear wave and Klein-Gordon equations in high regularity spaces on a geometric class of spacetimes including asymptotically de Sitter spaces. We obtain our results by proving the global invertibility of linear operators with coefficients in high regularity L2-based function spaces and using iterative arguments for the nonlinear problems....
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملIll-Posedness for Semilinear Wave Equations with Very Low Regularity
In this paper, we study the ill-posdness of the Cauchy problem for semilinear wave equation with very low regularity, where the nonlinear term depends on u and ∂tu. We prove a ill-posedness result for the “defocusing” case, and give an alternative proof for the supercritical “focusing” case, which improves the result in [4].
متن کاملSharp trace regularity for an anisotropic elasticity system
In this paper, we establish an optimal trace regularity theorem, also known as the hidden regularity theorem [L2], for the anisotropic linear elasticity equation on a bounded domain Ω with Lipschitz boundary. In its simplest form it provides a space-time L estimate for the trace of the normal derivative for the solution. Over the years, such sharp trace regularity theorems have proven to be cru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007